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The path-dependent electrodynamics of systems of bound 
charges: Lagrangian formulation and canonical relations 

Jan Fiutak and Marek Zukowski 
Instytut Fizyki Teoretycznej i Astrofizyki, Uniwersytet Gdanski, Wita Stwosza 57, 80-952 
Gdarisk, Poland 

Received 23 March 1981 

Abstract. The path-dependent Lagrangian is used to derive the energy-momentum tensor 
of the electromagnetic field and a system of bound charges. The Poisson brackets for the 
field are defined in a consistent way. Momentum is defined for both field and matter. The 
Hamiltonian of the combined system is given. The whole description is without any 
reference to electromagnetic potentials. 

1. Introduction 

Since the work of Power and Zienau (1959), renewed interest in electrodynamics of 
systems of bound charges has resulted in a number of papers. These papers were aiming 
at elimination of electromagnetic potentials from the theory. The connection of these 
attempts with the path-dependent formulation of electrodynamics (de Witt 1962, 
Mandelstam 1962), which follows from the paper of Fiutak (1963), was suggested by 
Woolley (1971), and examined by Fiutak and Engels (1973). The concept of compen- 
sating currents (Biatynicki-Birula and Biatynicka-Birula 1974) has been shown to be 
closely related to this problem (Fiutak and Zukowski 1978, Woolley 1980). The 
essential issue of canonical variables and their interpretation has been studied in many 
papers, from Power and Zienau (1957) to Power and Thirunamachandran (1980) and 
Rzgiewski and W6dkiewicz (1980). 

In this work we are interested in electrodynamics of systems of structureless point 
charges, grouped into stable neutral entities such as atoms and molecules. We are 
aware of all the complications of a rigorous description of spin particles (compare our 
attempt (Fiutak and Zukowski 1978)). The whole description presented here is in the 
domain of classical electrodynamics; however, the quantisation of the formalism can be 
performed, thanks to the correspondence principle, using the Poisson bracket relations. 
One is free to choose the very moment of quantisation. 

The starting point of this work is the Lagrangian of the electromagnetic field coupled 
with matter (Fiutak and Zukowski 1978). The interaction term is path dependent 
because of the polarisation tensor. We take the first pair of the Maxwell equations as 
our equations of constraints for the electromagnetic fields. This enables us to derive the 
equations of motion, the energy-momentum tensor and the angular momentum tensor 
without any recourse to potentials. The energy-momentum tensor for the field is 
symmetrical from the outset. 
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What is perhaps even more important, the present approach enables us to introduce 
the Poisson brackets again without any reference to field potentials. These Poisson 
brackets have the same form as the ones already known for phenomenological 
electrodynamics (Biakynicki-Birula and Biaiynicka-Birula 1974). The set of canonical 
variables is chosen in such a way that the Poisson brackets of the field variables with the 
matter variables vanish. Finally, we construct the generators of translations and 
rotations for any expressions built out of either the field variables or the matter 
variables. These generators can be called the canonical momentum and canonical 
angular momentum of the electromagnetic field or the matter. Adding the adjective 
‘canonical’ may be considered unnecessary, but calling them simply ‘momenta’ and 
‘angular momenta’ may lead to misunderstandings due to the existence of the kinetic 
momentum of particles. Besides, we want to stress their role in the canonical 
formalism. 

The work presented here is closely related to the problem of derivation of the atomic 
field equations in the sense of de Groot (1969). We do not want to discuss the whole 
problem of the derivation of the energy-momentum tensor of the electromagnetic field 
in ponderable matter (see de Groot and Suttorp 1972). Our intention is to obtain a 
general description at the microscopic level, leaving the specific problems for future 
papers. 

2. The Lagrangian formulation of bound charges electrodynamics 

The Lagrangian of the electromagnetic field and neutral atoms, i.e. stable aggregates of 
point particles, has been given in Fiutak and Zukowski (1978). It has the following 
structure: 

where 
linear Maxwell electrodynamics has the usual form 

is a Lagrangian density of the electromagnetic field, which in the case of the 

q ( X )  = -2fw””(x) f””(4;  ( 2 )  

2l is a Lagrangian density describing the particles. The electromagnetic fields satisfy 
the equations of constraints 

a c f p y  + a y f a p  + d p f y a  = 0, (3) 

which are usually known as the first pair of the Maxwell equations. Due to the condition 
(3), and the definition of the polarisation tensor, namely 

apmaP = jm, (4) 

where j ”  is a current density describing the particles, the transformations of the 
polarisation tensor given by 

m a p ( x )  = m’aP(x)+EaP, .Va~xy(X) ,  ( 5 )  

where xu is an arbitrary differentiable four-field, do not change the equations of motion. 
These transformations are of the same origin as the usual gauge transformations in the 
electrodynamics formulated in terms of electromagnetic potentials. One can restrict 
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the possible forms of the polarisation tensors to the so-called path-dependent ones, 

map ( x )  = “f I S(4)(x - 5) dumP5 
k i = l  uk, 

where k is the summation index numbering the atoms, and i numbers the particles in the 
kth atom. The integration is over the dynamical strip (+ki of the particle, which is an 
arbitrary two-dimensional surface between the trajectory of the kith particle and the 
trajectory of the centre of the kth atom. For the convenience of the reader we present 
the main ideas connected with the notion of polarisation tensor in appendix 1. An 
extensive study of the role of the transformations ( 5 )  in the Lagrangian (1) has been 
given by Healy (1979, 1980, 1977). 

Equations of motion, the conservation laws, the definition of the energy-momen- 
tum tensor, and the angular momentum tensor are obtained by variations of the action 
integral 

W = Z ( x )  d4x. (7) 

The integral is over the region of space-time contained between two arbitrary space- 
like surfaces u1 and u2. We assume that ul and u2 have no common points, and that u2 
is later than ul. 

We obtain the equations of motion for the field variables if we choose variations 
&faP of the electromagnetic fields which vanish at the boundary surfaces u1 and u2. The 
action principle requires that 

However, the variations of the fields Sof,y are not independent but subjected to the 
constraints (3), namely 

aasofp, + apsofya + aysofup = 0.  (9) 

The easiest way to take those constraints into account is to present the variations 
8ofeP in the form 

sof,y = a,$” -a,$, = J[,+”I (10) 

where the $v are unconstrained, fulfilling only the requirement that SofWy must be 
infinitesimal. Note that all we need is the form of the variation (lo), and this implies that 
electromagnetic potentials are not introduced. In order to make it more clear and 
unambiguous, we present in appendix 2 an equivalent approach, based on the path- 
dependent electrodynamics (de Witt 1962, Mandelstam 1962), which is also free from 
the concept of electromagnetic potentials. 

Since the variation of the action integral is given now by 

the principle of stationary action implies the following equations of motion for the 
fields: 

a, aZ/afPy = 0. (12) 



3232 JFiutak and MZukowski 

One can introduce the traditional notation for 82’/8f,,, namely h,’. In the case of the 
Maxwell electrodynamics 

(13) 

One can obtain the equations of motion for the particles by varying their trajectories 
inside the space-time region contained between u1 and u2. For the ith particle one 
obtains 

h,’” = fGLY - mWY. 

w2 

6bW = lu, d 4 ~ ( ? S b m * P ( ~ ) f , p ( ~ ) + 6 b ~ i ( ~ ) ) .  

The Lagrangian density Zi(x)  for a relativistic point particle is given by 
+oo 

L&(x)  = -mic I-, ds ~3‘~’[x -&(s)], 

where mi is the mass of the ith particle, &(s) its trajectory, and 

de/* 
ds 

+W 

ds S[x - &(s)] - S.f?l(s) ds. 

The equations (14)-(16) lead to the well known law of motion for point charges 

where u i ( s )  is the four-velocity of the ith particle. 
Now as we have the equations of motion governing both fields and particles we can 

derive the conservation laws. The energy-momentum and angular momentum tensors 
are defined by the conservation laws resulting from the invariance of the action integral 
with respect to the Lorentz transformations. Under an infinitesimal Lorentz trans- 
formation A, any point x of the space-time changes its coordinates in the following way, 

(Ax), = x’, = xcL + ( E &  + aFLYx,) = x F  + a x F ,  (18) 

where E ”  and up” are infinitesimals of first order. For any tensor Z , ,  we have 

~ ~ , , ( X ) = Z ~ ~ ( X ) - Z ~ ~ ( X ) = - E ~ ~ , Z ~ ~ - ~ ~ , ~ ~ ~ ~ ~ ~ Z  p y  +I 2a,v 6 [ y [ ~ z p l y l ,  (19) 

and finally the action functional is changed by an amount 
A ( w J  

S W =  A ( m i )  L f ( A ~ ) d ~ x - ~ ~ ~ Z ( x ) d “ x  

where 

Using the equations of motion (12) and (17) and the equations of constraints ( 3 ) ,  we 
finally obtain 

6W = F(a*)  - F ( u J ,  (22) 
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where 

F ( u )  = :Mw”al*,, + P’IE,, 

and the momentum vector P’” and angular momentum tensor are given by 

P’” = t’”” da,, I, 
Iu M’”” = ( tP’”xY - t P ” X ’ ” )  du,. 

The energy-momentum tensor can be split into two parts, namely 

t ” ” ( x )  = t ? ” ( X )  + t” ,” (x) ,  

t ; ” ( x )  = -(a3f/af’”,)fy” - g””3f, 

where the field part is given by 

and the energy-momentum tensor for the particles reads 
+m 

t” ,” (x)  = mic ui(s)’”ui(s)”S[x - &(s)J ds. 
1 

Note that t?’ is symmetric since ,Se, can be a function of the only possible invariants 

and p = -‘f 4 ’”U p” * (29) s=  -‘f f’””” 
4 ’”v 

In the most general case t?” is equal to 

We can conclude this section by stressing that the formalism presented here employs 
only physical fields and leads straight to the symmetric energy-momentum tensor 
without any intermediate stage of a canonical non-symmetric one. The procedure can 
be applied to the free field as well as to the interacting one. 

3. The Poisson brackets and canonical momenta 

The Poisson bracket relations for the coupled fields can be introduced only at two 
space-like situated points. It is impossible to extend the PB relations for field variables 
at general points in the four-dimensional continuum, since it would be necessary to 
know the solutions of the field equations (12) and (17). 

The total energy of the interacting system Po is a functional of the fields f P y  and of 
the positions and velocities of the charges. In the observer’s Lorentz frame it is found 
that 

Po = d3x too(x)  I 



3234 JFiutak and MZukowski 

where mkj is the kinetic momentum of the kith particle, and 

d = (h", ho2, ho3) = aZ/ae, 

e = ( f O ' ,  P2, f 0 3 ) ,  

b = ( f23 ,  f 3 ' ,  f 1 2 L  

p = ( m  lo, m 20, m 30). 

The formula (31) can be rearranged into an equivalent form, 

where the canonical momentum of the kith particle is defined as 

P k t  = aL/aqkl. (33a) 
The total energy expressed in terms of d and b, P k i  and q k r  is, as we shall see, the 
Hamiltonian of the system (i.e. the generator of the time translations) 

H = po[d, b ; P k i ,  q k t  1. (34) 

Taking the variation of (33) and using the definition of d,  we obtain 

The variations Sd and 66 are not unconstrained. The latter one is governed by (9), and 
Sd must fulfil the requirement 

div Sd(x)  = 0 (36) 

(due to the equations of motion derived in the previous section). Once more we can 
define 6 d ( x )  to be 

6d = v x  q ( x )  (3 7) 

where the q are arbitrary in the same sense as the $J". The new and the old constraints 
and the equations of motion enable us to transform 6H into 

On the other hand 

Using once more the constraints (9) and (36), and comparing the result with (38), we 
obtain 
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The following Hamilton’s equations are implied by the last formula: 

b = -V x 6H/6d, 

d = V x 6H/6b, 

qki = dH/apki, 

@ k l  =z -dH/aqki. 

If we introduce the Poisson brackets for the system defined as 

the equations (40) can be treated as examples of a general law of dynamical evolution of 
any observable 

{9, H }  = 9. 

This definition of the Poisson brackets is well justified, because of the following facts. 
The usual association of P” and MLLY (expressed by the canonical variables) with the 
infinitesimal Lorentz transformations is possible using (41) as the definition of the PB. 

For any field f, an infinitesimal Lorentz transformation changes it by 

Sf, = if,, F(a)l 
where f, and F ( a )  are expressed in terms of the canonical variables in the Lorentz 
frame associated with the hyperplane (+. The Poisson brackets (41) together with the 
definitions of P@ and M P v  introduce the correct structure of the Lorentz group from the 
point of view of the Lie algebra formalism. 

Using the general definition, one can easily derive the basic Poisson bracket 
relations for the canonical variables describing the fields 

{bi(x) ,  d j ( y ) } =  cijkaka(X-~),  

{d i (x) ,  d j (y ) }  = {bj(x) ,  bi(x)}= {di(x) ,  (qki)j} 

= { d i ( x ) ,  (Pki)j}={bi(X),  (qki)j}={bi(X), ( P k i ) j } =  0.  (42) 

Applying the correspondence principle, we can use these relations for quantisation of 
the whole system. 

The Poisson brackets for the variables describing the particles are introduced using 
(41), and are as follows: 

where ki and k’i’ number the particles, and r and s the coordinates. For the 
path-dependent polarisation tensor, based on straight lines, the canonical momentum 
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pk i  of the kith particle is (in the special reference frame-see appendix 1) 

where wk, are arbitrary weights, and 

and represents the central point of the kth atom. The central point fulfils the 
requirement 

which means that R k  must be a canonical conjugate of the total canonical momentum of 
the atom. The total canonical momentum of the atom is the generator of space 
translations for the atomic variables. The last sentence will be understood as the 
definition of this quantity. 

The notion of the total canonical momentum can be used in the analysis of the field 
variables. The relation between the total kinetic and canonical momentum of an atom 
can be written as 

where P k  (x) is the polarisation of the k th atom, and Pk is the total canonical momentum 
of the atom. The formula holds for arbitrary Rk fulfilling (45). The polarisation in (46) 
need not be described by straight lines, since the formula is invariant with respect to 
arbitrary modifications of the polarisation tensor which satisfy 

where C(x, t) is a function vanishing outside a certain volume containing the atom. The 
total momentum of the electromagnetic fields and particles can now be decomposed 
into 

P = P f + P , , , =  d(x )xb(x )d3x+  Z P k  (48) I k 

where the summation is over all atoms. The field part of the splitting (48) will be called 
the total canonical momentum of the electromagnetic fields. 

It should be stressed that the splitting (48) is possible only for definitions of the 
polarisation tensor that use central points satisfying (45). All the other definitions of the 
polarisation tensor, e.g. with a fixed central point, presented by Woolley (1975), or the 
independently moving one used by Healy (1977), break the relations (46) and (48). In 
our view the fixed point approach to the polarisation tensor is nothing more than using a 
special kind of pciential. 



Electrodynamics of systems of bound charges 3237 

The total canonical momentum of the electromagnetic fields, which we shall denote 
by Pf, has the property 

which justifies its name. 
By analogy one can introduce the total canonical angular momentum of the fields 

M - d3x[x x ( d ( x )  X b(x))] (50)  f - s  
and of the particles 

4. Concluding remarks 

The formalism presented here is well suited for any models of electrodynamics. We 
have given the Lagrange and Hamilton formalism for the fields interacting with neutral 
atoms. The Poisson bracket relations enable us to quantise the electromagnetic fields 
without introducing potentials. 

The b and d fields are the canonical variables describing the electromagnetic field. 
The canonical momentum and the canonical angular momentum are functionals of 
these fields. On the other hand the path-independent fields b and e serve as the 
Lagrangian variables. 
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Appendix 1. Polarisation tensor 

The current density of a bound system of point charges is given by 

j o L ( Z )  = c y) e k ,  I 8'4'(Z - & i )  dtEi 
k i = l  Pk, 

(Al . l )  
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where eki is the electric charge of the kith particle and Pki its trajectory and n ( k )  is the 
number of particles in the kth atom. One can introduce a privileged 'central' trajectory 
with which the motion of the kth aggregate of the charged particles as a whole can be 
identified. The central trajectory depends on the positions of the constituent particles 
in a certain reference frame. The parametrisations of all trajectories associated with the 
kth atom are 'synchronised' in this reference frame, i.e. 

in the specified frame; Rc ( A )  represents the 'central' trajectory. 
For such a system the polarisation tensor is given by (6), and can be called a 

path-dependent one since in any reference frame the polarisation and magnetisation 
vectors are in fact 

(A1.3) 

(A1.4) 

where the path c k i  is a result of the intersection of the dynamical strip c k ,  and the 
space-like plane associated with the reference frame. 

The path-dependent polarisation tensor is associated with a family of compensating 
currents of the form 

Appendix 2. An alternative way of deriving the equations of motion 

It is easy to check that one can transform unconstrained variations of the fields 8fmp into 
constrained ones GCfep (by constrained variations we understand such that satisfy (9)). 
One can find that 

(A2.1) 

The integration in (A2.1) is along an arbitrary space-like path leading towards the point 
x from infinity. 
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The variations 6,,folP are equal to zero at the boundary surfaces crl and cr2 in 6W. 
Hence 

(A2.2) 

One can choose the paths in the surface integrals to be inside the respective surfaces, 
and thus the last term in (A2.2) vanishes. The equations of motion (12) follow from 
(A2.2) since Sofap in the volume integral are arbitrary. 
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